当前位置:首页 > 短网址资讯 > 正文内容

记一次go程序优化实践,获得了3倍性能的提升以及学会了on-cpu/off-cpu火焰图的使用

www.ft12.com8年前 (2017-07-29)短网址资讯3333

先把结论列在前面:

1.Golang的性能可以做到非常好,但是一些native包的性能很可能会拖后腿,比如regexp和encoding/json。如果在性能要求较高的场合使用,要根据实际情况做相应优化。


2.on-cpu/off-cpu火焰图的使用是程序性能分析的利器,往往一针见血。虽然生成一张火焰图比较繁琐(尤其是off-cpu图),但绝对值得拥有!


之前一直使用Logstash作为日志文件采集客户端程序。Logstash功能强大,有丰富的数据处理插件及很好的扩展能力,但由于使用JRuby实现,性能堪忧。而Filebeat是后来出现的一个用go语言实现的,更轻量级的日志文件采集客户端。性能不错、资源占用少,但几乎没有任何解析处理能力。通常的使用场景是使用Filebeat采集到Logstash解析处理,然后再上传到Kafka或Elasticsearch。值得注意的是,Logstash和Filebeat都是Elastic公司的优秀开源产品。


为了提高客户端的日志采集性能,又减少数据传输环节和部署复杂度,并更充分的将go语言的性能优势利用于日志解析,于是决定在Filebeat上通过开发插件的方式,实现针对公司日志格式规范的解析,直接作为Logstash的替代品。


背景介绍完毕,下面是实现和优化的过程。


Version 1

先做一个最简单的实现,即用go自带的正则表达式包regexp做日志解析。性能已经比Logstash(也是通过开发插件做规范日志解析)高出30%。


这里的性能测试着眼于日志采集的瓶颈——解析处理环节,指标是在限制只使用一个cpu core的条件下(在服务器上要尽量减少对业务应用的资源占用),采集并解析1百万条指定格式和长度的日志所花费的时间。测试环境是1台主频为3.2GHz的PC。为了避免disk IO及page cache的影响,将输入文件和输出文件都放在/dev/shm中。对于Filebeat的CPU限制,是通过启动时指定环境变量GOMAXPROCS=1实现。


这一版本处理1百万条日志花费的时间为122秒,即每秒8200条日志。


Version 2

接下来尝试做一些优化,看看这个go插件的性能还可不可以有些提升。首先想到的是替换regexp包。Linux9下有一个C实现的PCRE库,github.com/glenn-brown/golang-pkg-pcre/src/pkg/pcre这个第三方包正是将PCRE库应用到golang中。CentOS下需要先安装pcre-devel这个包。


这个版本的处理时间为97秒,结果显示比第一个版本的处理性能提升了25%。


Version 3

第三个版本,是完全不使用正则表达式,而是针对固定的日志格式规则,利用strings.Index()做字符串分解和提取操作。这个版本的处理时间为70秒,性能又大大的提升了将近40%。


Version 4

那还有没有进一步提升的空间呢。有,就是Filebeat用作序列化输出的json包。我们的日志上传使用json格式,而Filebeat使用go自带的encoding/json包是基于反射实现的,性能一直广受诟病。如果对json解析有优化的话,性能提高会是很可观的。既然我们的日志格式是固定的,解析出来的字段也是固定的,这时就可以基于固定的日志结构体做json的序列化,而不必用低效率的反射来实现。go有多个针对给定结构体做json序列化/反序列化的第三方包,我们这里使用的是easyjson(https://github.com/mailru/easyjson)。在安装完easyjson包后,对我们包含了日志格式结构体定义的程序文件执行easyjson命令,会生成一个xxx_easyjson.go的文件,里面包含了这个结构体专用的Marshal/Unmarshal方法。这样一来,处理时间又缩短为61秒,性能提高15%。


这时,代码在我面前,已经想不出有什么大的方面还可以优化的了。是时候该本文的另一个主角,火焰图出场了。



火焰图是性能分析的一个有效工具,这里(http://www.brendangregg.com/flamegraphs.html)是它的说明。通常看到的火焰图,是指on-cpu火焰图,用来分析cpu都消耗在哪些函数调用上。


安装完FlameGraph(https://github.com/brendangregg/FlameGraph)工具后,先对目前版本的程序运行一次性能测试,按照说明抓取数据生成火焰图如下。


FlameGraph对于c/go程序是通用的。对于go程序,也可以使用自带的net/http/pprof包作为数据源,然后安装uber的go-torch(https://github.com/uber/go-torch)工具来自动调用FlameGraph脚本生成on-cpu火焰图,执行会稍为简便一些。参见go-torch说明。



图中纵向代表的是函数调用栈,横向各个方块的宽度代表的是占用cpu时间的比例,需要留意的是靠近顶端的大长条。方块的颜色是随机的没有实际意义。


从上图可以看到cpu时间占用最多的主要有两块。一块是Output处理部分,稍为大头的是json处理,这块已经优化过没什么可以做的了。另一块就比较奇怪了,是common.MapStr.Clone()方法,居然占了40%的cpu时间。再往上看,主要是Errorf的处理。一看代码,马上明白了。

common.MapStr是在pipeline中存放日志内容的结构体,它的Clone()方法实现里判断一个子键值是否为嵌套的Mapstr结构时,是通过判断toMapStr()方法是否返回error。从这里看,生成error对象的代价是非常可观的。于是,一个显然的fix,就是将toMapStr()中的判断方法移到Clone()中并避免生成error。


Version 5

对修改后的代码重新生成一张火焰图如下。



这时common.MapStr.Clone()从图中已经几乎找不见了,证明花费的cpu时间已经可以忽略不计。

测试时间一下子缩短到了46秒,节省了33%,非常大的改善!



到现在,还有一个之前未提到的问题没有解决——在限制使用一个core之后,测试运行时cpu利用率只能跑到82%左右。是不是由于有锁存在影响了性能呢?


这时候,又该请off-cpu火焰图出场了。Off-cpu火焰图,是用来分析程序没有有效利用cpu的时候,消耗在什么地方了,在这里(http://www.brendangregg.com/FlameGraphs/offcpuflamegraphs.html)有详细的介绍。数据收集比on-cpu火焰图要复杂,可以使用大名鼎鼎的春哥提供的openresty-systemtap-toolkit(https://github.com/openresty/openresty-systemtap-toolkit)包。春哥的项目页面中没有详细说明的是kernel-devel和debuginfo包的安装方法。在此也记录一下。


# kernel-devel没有问题,直接yum安装

sudo yum install -y kernel-devel 


# debuginfo,在CentOS7中需要这样装

sudo vim /etc/yum.repos.d/CentOS-Debuginfo.repo


修改为enable=1

sudo debuginfo-install kernel


安装时可能还会报错:

Invalid GPG Key from file:///etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-Debug-7: No key found in given key data

需要从https://www.centos.org/keys/RPM-GPG-KEY-CentOS-Debug-7下载key写入到/etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-Debug-7


安装完后按照说明生成了off-cpu火焰图如下:



我还不能完全解读这张图,但是已经可以明显看到,对Registry文件(Filebeat用于记录文件采集列表和offset数据)的写操作占了一定比例。于是,尝试将Filebeat的spool_size(每完成这么多条日志更新一次Registry文件)设置为10240,默认值的5倍,运行测试cpu已经可以跑到95%以上。而将Registry设置到/dev/shm/下也同样可以解决测试时cpu跑不满的问题。


这就否定了上面对锁使用不当影响性能的猜测。在实际应用时spool_size的设置应当依据结合了output端(如写入到Kafka)的测试数据来决定。



至此,优化结束,达到了最初版本性能的3倍!
各个版本的具体运行性能数据如下图所示。



需要稍作说明的是:

1.Filebeat开发是基于5.3.1版本,go版本是1.8


2.Logstash的测试通过-w 1参数配置使用一个

工作进程,并未限制使用一个core


3.执行时间包括了程序的启动时间(Logstash的启动时间有将近20秒)


最终的优化结果是,针对特定格式和长度的日志解析能力在PC上达到了每秒25000条,即使在CPU主频较低的生产服务器上,也可以达到每秒20000条。


Go的高性能真不是吹的,当然是要在足够的优化后:)

扫描二维码推送至手机访问。

版权声明:本文由短链接发布,如需转载请注明出处。

本文链接:https://www.ft12.com/article_356.html

分享给朋友:

相关文章

分享6款好用的WordPress插件,让你网站具有短网址跳转功能

分享6款好用的WordPress插件,让你网站具有短网址跳转功能

啥是跳转连接我想大家也知道吧?就是像微博的短网址相同,比如翻开ft12.ocm/xxx  实际是跳转到其它网站页面。那么啥情况下跳转连接呢?运用短网址,坚持连接一致美观性。削减页面权重丢失。躲藏一些短链接(比如推行链接、taoba...

任志强为何改口说房价要暴跌

任志强为何改口说房价要暴跌

任志强为何改口说房价要暴跌作者:FT12短网址前几天,任志强有一个演讲,刷爆了网络,他说,中国房价不会跌,鼓励大家尽管去买房。后来有网友问草哥,作为一个房价唱空者,对任志强的这个判断怎么看?为了了解背景,我查了一下任志强的说法,他的意思是:...

DHT 爬虫初步研究

一直想写一个种子搜索引擎,搜集资料开始写后遇到了一个难关:爬虫的效率太低,运行一天也爬不到一条消息,而且阿里云在我的程序开始运行后一天就无法远程登录,只能重启服务器。一度计划被搁置了下来,直到最近事情出现了转机,我找到了更好的爬虫原型,并且...

创业者除了没有性生活,还有这些不为人知的隐疾……

有一篇名为《最难的时候,刘强东姚劲波是怎么过来的》的文章,生动描述了58同城的姚建波在创业最困难时,在压力下落泪的故事。美剧《硅谷》第二季中剧中主人公、创始人Richard因为创业的压力严重盗汗、甚至可能小便失禁,这一剧情真实反映了很多创业...

如何进行网站分析?

如何进行网站分析?

网站分析的首要目标是提升线上客户的用户体验。短网址分析不是提供报表的一种技术,而是优化网站的一个有效的流程。下述的框架有助于在公司建立数据驱动的文化,去监测客户与网站的交互,细分客户群体,了解每个不同群体的行为,分析不同营销活动的回报率,以...

解析百雀羚的广告为什么刷爆朋友圈

虽然我们晓得这是一则广告,但是我们还是想要看到最后一刻,这就是好的想法和创意带给我们的吸收力。朋友圈被百雀羚的广告刷屏,继宝马的H5广告之后,这家降生于1931年的企业再次用一种十分新奇的方式火爆了整个朋友圈。虽然我们晓得这是一则广告,但是...

发表评论

访客

◎欢迎参与讨论,请在这里发表您的看法和观点。